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ABSTRACT

This report is intended as a rigorous tutorial on synthetic aperture radar
(SAR) with emphasis on digital data collection and processing, Background

information on waveform frequency and phase notation, mixing, I, Q conversion,

sampling and cross-correlation opcrations is included for clarity, The fate of
a SAR signal from transmission to processed image is traced in detail, using
the model of a single bright point target against a dark background. Finally,

some of the principal problems connected with SAR processing are discussed.
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SYNTHETIC APFRTURE RADAR AND DIGITAL PROCESSING:
AN INTRODUCTION

1. Introduction and Motivation

The purpose of this report is to provide a basic yet rigorous
introduction to synthetic aperture radar (SAR), with an emphasis on digital
data collection and processing. The method will be to start with simple models,
and then to refine these models so they more closely approximate the real
world.

The only knowledge assumed on the part of the reader is a familiarity
with elementary algebra, trigonometry, and complex arithmetic, plus a faint
glimmer of differential calculus, All other concepts will be developed in this
report,

Completeness is not attempted here. Instead, we trace in detail what
happens from beginning to end when a SAR interrogates a point target on the

ground, The principle of linear superposition can then be used to infer the

resvlt when th» terrain contains distributed targets, i.e., multiple point
targets, In the last section, some problems connected with SAK are sketched
for the interested reader. Some knowledge of probability is assumed.

We begin in this section by describing a siniple kind of imaging radar: a
real aperture radar with no rang - compression, While this radar is not a SAR,
an understanding of how it generates imagery will prove valuable in the under-
standing of a SAR,

Our primitive radar may be thought of as a flashlight pointing downward and
outward from the side of a moving airplane, Figure 1 shows a view of the beam as
seen from directly behind the aircraft, The angle ﬁr is called the "range" ele-

vation beamwidth and is related to the ground swath width, Of course, the heam




GROUND
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Fig. 1. Radar Beam as Viewed from Behind the Airplane

is composed not of light, but of lower frequency radio waves, and the
"flashlight" is really a radar antenna, Figure 2 shows the beam as viewed from
directly above the airplane. Notice that we have drawn the beam considerably

narrower in Fig., 2, The small angle ﬁa is the azimuth beamwidth, With the

proper design of a radar antenna, it is indeed possible to create a beam with

distinct range and azimuth beamwidths,

Now let us suppose the radar is turned on for a very short time, and then

off again, A brief burst of radio energy is emitted, which we may picture as

the shaded band in Fig, 3, (Note incidentally in Fig, 3 that ground range G is

related to slant range R by




AIRPLANE DIRECTION OF MOTION
_ (ALSO CALLED AZIMUTH DIRECTION)

Fig. 2. Radar Beam as Viewed from Directly Above the Airplane,
[.ooking Straight Down at the Ground
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Fig, 3, Burst of Radar Hlumination Viewed from bBehind the Airoraft
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where Yc is the angle of clevation of the target from the nadir, After reflection
from the ground, the same shaded band is shown rcturning to the aircraft in
Fig. 4. Note that only the two designated areas (X) on the ground have enough
reflectivity to return an appreciable echo, and that the two echoes will arrive
back at the aircraft at different times, because they must travel different
distances. Suppose we have a receiver which samples the returaing echo

as a function of time and records its instantaneous intensity. Then the

sampled intensity will appear as in Fig. 5, or as in Fig. 6. Thus we see

that by sampling the echo received from a single burst of radar cnergy, we
have ""painted" a one-dimensional strip of imagery perpendicular to the air-

craft flight path, (This "strip" will henceforth be called a '"range line' in this

.
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Fig. 4, Returning Lcho
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report, since itis oriented along the range direction, i.e.. perpendicular to

the flight path, The term range line will also be used later for any strip of
unprocessed or processed radar data which is oriented along the range axis,

The opposite notion is an azimuth line, which is a slice of data oriented in a

direction parallel to the flight path.) The paintbrush moves from almost beneath

ECHO
INTENSITY

)

SAMPLED INTENSITY VALUES

ELAPSED TIME

Fig. 5. Sampled Plot of Received Echo Intensity Versus Time
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Fig. 6. Alternate Echo Display

the aircraft to far out to the side; the "movement" of the paintbrush arises from
the diiferent arrival times of the echo from different portions of the swath.
Note in Fig. 6 that if the two reflectors (X) were closer together than the
width w of the pulse in Figs. 3 and 4, the two targets would blur together.
Thus it is imperative to transmit a very short pulse.

Now we have a strip, as in Fig. 6, but how do we produce a two-
dimensional image? The answer it easy: just keep painting strips next to
each other. We do this by turning on the radar again, when the aircraft has
moved over, to produce the neighboring strip. Note that the "'width'' of our
strip in azimuth (Fig. 6) is equal to the azimuth beamwidth along the ground.
We cannot ''see'' any detail within the bright spots of Fig. 6 because the
sampler can only record one intensity value at each instant of time. Thus the
two X's in Fig. 2 cannot be separated, If we now continue, turning the radar
on and off, we will "'paint'' a long succession of strips next to each other, The
azimuth width of each strip is the ground azimuth beamwidth; and in the imagery
we can only distinguish objects in one strip (i, e., one pulse) if they are further
apart in range than the range pulsewidth w (actually 1/2 the pulsewidth - can you

see why?), Thus our image resembles Fig. 7, if we allow four "'strips."
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Fig. 7. The Beginnings of an Image

There are problems connected with this imaging approach, The first is
that the pulse width in range (w in Fig. 3) mwust be kept short, as stated above,
This requirement limits the energy transmitted per pulsce and makes it difficult
to detect weak, distant targets., The second problem is that, as already stated,
we cannot distinguish the two targets (X) in Fig. 2. Although we can alleviate
this problem somewhat by making ﬂa, the azimuth beamwidth, very narrow, we
can only succeed partially, since very large antennas are required to produce

narrow beams, Synthetic aperture radar (SAR) is a means of solving the

sccond problem, In short, a SAR is simply a radar which uses the information

from an centire sequence of pulses along the azimuth (and not just one) to produce

@ single painted strip of imagery as in Fig, 6, Thus, for example, all 4 pulses

implied by Fig, 7 might be used in a SAR to provide information about the first

~J
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output strip in the figure. The resultis refined resolution or ability to

separate nearby targets along the azimuth,

The first problem (i, e., the problem of weak signal returns due to a
short duration pulse) is solved by simply transmitting a longer pulse, often of
the type known as the 'linear FM chirp.'" The reader may well ask at this
point, '"Then how do we obtain the required range resolution?! The answer is
that upon receiving the echo pulse we '"compress' it to a shorter "pulse' by the
technique of cross-correlation, to be discussed in section III-B, However,
before discussing cross correlation we first require some background on

electromagnetic waveforms, The reader is urged to follow the detour method-

ically; the results will be well worth the effort,




11, Flectromagnetic Waveform Notation and Discussion
A, Phase and Frequency

Radio waves, like light waves, travel at a speed given by
~ > C , 8 .
¢~ 2,99776 X 10 meters/sec, (1)

and are typically expressed as sinusoids:

s(t) = A cos (wt) (2)
Here
t = time, a real number
A = amplitude factor, greater than 0
w = radian frequency, a real number

The right hand term in parentheses, («t). is the argument of the sinusoid and
& p &

is called the phase. If we put, for the sinusoid of ¥q. (2),

a(t) = wt (3)
then we have
ey = d¢
cb(t)-dt = (4)

Thus the radian frequency is the time derivative of the phase,  In other words,
frequency is the rate of change of the phase. '

A more general wasvetform is given by ”

s(1) = A(L) cos (&(t) (5)

R}
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where both A and ¢ arce real functions of t, Again, ¢ is called the phase
function and ¢'(t) the radian frequency., The (positive) function A(t) is the

amplitude function. [f we change variable by forming a new function f(t)
dU(t) = 2nf(t) (6)

then f is the frequency in Hertz, or cycles per second. Thus in the special case

of Eq. (2), we have
d(t) = wt
$'(t) = «, a constant function of time.
We have then
f(t) = w/2nm = {, a constant (7)
so that
s(t) = A cos (2rI1t) (8)
From (8) we see that s(t) has period r, where
r=1/f (9)

kixample
The following waveform is known as a linear FM waveform, ('"Linear FM"
stands for lincar frequency modulation,) This form of signal, also called a

"chirp, " is frequently used in SAR's, Define, for -T/2+ t « T/2 and real a,

1.(t) = cos (-‘-,‘i) (10)

10
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Then the phase is

S (1) = 9—‘,5- (11)
and the radian frequency is
$'(t) = at (12)
Thus the frequency in Hertz is
f(e =3 (13)

The term at in Eq. (12) explains the "linear" terminology. for the fre-
quency is a lincar function of time t, If a ~0, then a plot of frequency versus

time for 1.(t) looks like Fig. 8.

FREQUENCY
4 (T2, al 2)

& TIME

-1 2, -al 2 i

Fige 8. Lincar FAM Frequeney Plot
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Note that at t = 0 we have

f(t) =o' (t) = 0 (14)
, T
while at t = :1:5- we have
aT
d'(t) = :I:T (15)

Note also that we may differentiate the frequency in Eq. (12) and (13) to obtain

the frequency rate:

) é o' (t) = a (radians/secz) (16)
)
{ £(t) = £(t) = 5= (Hertz/sec) (17)
’moz Eq. (16) gives the slope of the line in Fig. 8.
)
i B. Interference and Antenna Beamn. idth
0 Suppose we have two waveforms of unit amplitude and unit frequency in
Hertz:
s, (t) = cos (2nt) (18)
1
3 s, (t) = cos (Zn (t - E)) (19)

See Fig, 9, We see that s, and s, differ only in phase, but this is enough to

causc totai cancellation, Thus, if we put

s(t) = s it) v s, (t) (20)

we have

s(t) O (21)
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Fig. 9. Interference

We note from £qs. (18) and (19) that Eq. (21) holds when the offset

between the signals is one-half of a period. If we regard a wave as a physical

structure, then we may define a wavelength as the physical distance corre-

sponding to ''the smallest period''. We usually denote this quantity by \, and

observe that the ''physical wavelength' N and the ''time wavelength' v (also

called the "period") are related by

(22)

13




\ where ¢, the velocity of light, is given by (1). Eq. (22) isonlya version of

the familiar relation

distance = (rate) x (time)

|
)
(ll
N
\\ and if we recall that period is inversely related to frequency by
| _1
. ? T = T (9)
‘ % we obtain from Eq. (22)
g A\ =%
) f
~ AN o=c (23)
Q % In words, Eq. (23) says the wavelength times the number of waves passing

per second is cqual to the distance light travels in a second.
If in Fig. 9 we regard s, and s_ as signals possessing the same
arbitrary wavelength \, then we see that in general two signals will interfere

destructively (""cancel") when they are offset by A/2.

Antenna beamwidth is related to the above considerations., In Fig. 10 we
show a point target returning a radar echo (of wavelength \) to a radar antenna
of length L, The target is offset from the perpendicular axis ("boresight') of
the antenna by 0 radians, andis sufficiently far away that it produces a nearly
straight wavefront of parallel waves at the antenna, In the figure we supposc
that the angle 0 is such that the wavefront is \ units further from the right
cdge of the antenna than from the left, (i, c., the offset between waves @ and
@ is \, a wavclength), The offset between waves @ and @ is \/2, and

they cancel out, looking, for example, at @ and @ we sec that every

14

< ! ’ . '
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¢ z TARGET

BT

0 satisfies (see Fig. 10)
sin @ ~ %
Since generally in SAR antennas, A is much smaller than L.

N« L.

15

Fig. 10. Destructive Interference in a Radar Antenna

wave in the left half of the antenna has a corresponding cancelling wave in the
right half, and thus we expect the net signal to be zero., This is indeed the
case, and if we plot the strength of received signal from a point target as a

function of offset angle, we obtain a curve resembling that in Fig. 11, where

(24)




o

-0 -9/2 +0/2

Fig. 11l. Antenna Patterr

sin 6 * © and hence Eq. (24) becomes

we have that 6 is small,
(25)

~ A
0~ T

or spaceborne SAR systems,

(Generally the beamwidth © is on the order of 1° £

s a very good approximation. )

so (25) i
Thus the null-to-null beamwidth of the antenna is
2N
20 = T

sity drops to 1/2 of its

hich the return signal inten

the offset at W

However,
ed to define

2: this offset is usually us

lue is usually around 26/
2(0/2) = 8. hence the

maximum va
which is thus given as

or "3 dB" beamuwidth,

half-power"
3 dB beamwidth of a radar antenna is given by
0~ T (26)

io
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‘ and we sce that the longer the physical antenna, the smaller the beamwidth,
Thus in Section I, where we desired a narrow azimuth beamwidth Ba, we see
that a SAR antenna with long azimuth dimension was required,

How long? Well, if we wish to separate two targets 10 meters apart in
azimuth, then our '"flashlight beam' must be narrower than 10 meters on the
ground along the azimuth., (See Fig. 2.) A typical radar wavelength A might be
0. 235 meters, and the distance between airplane and ground target might be

15 km., Using the relation arc length = (radians) X (radius),

15 km (radius)

<

10m
(orc length)

e

. c
S
K #

we obtain

10m = 0 X (15 km)

so that

0 = 0,00067 radians

and from Eq. (20)

- A
L =3
| 4'
l . = 352, 5m :
f ‘
) } 17

W
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Most airplanes are not equipped to carry an antenna this long! As we have
alrecady stated, SAR provides 2 solution to the problem; however, our back-

In the meantime note that

pround deveclopment must first be completed.

Eq. (26) implies that azimuth resolution 6, is given by

\,—l’;——\—\,‘r;.\.«—_——a—w.;-ﬂ e I

_ RMA
Sy =T (26")

rcraft and target. (See Fig. 3.)

where R is the distance (slant range) between ai

The resolution of 2 SAR will be considerably better.

C. Mixing

Engineers alter the frequency of 2 sinasoidal signal by mixing, which con- \

and then filtering.

) sists merely of multiplying the given signal by another signal

nce frequency is produced. For

In this way a signal having the sum or differe

b
' { our application we require the difference irequency.

As an illustrative example, consider two signals having frequencies of

gnals are multiplied together, we o

100 Hz and 120 Hz, If these si btain a new

signal consisting of two components, Or ngidebands'. The first component has
The second component has frequency (120 + 100)

frequency (120-100) or 20 Hz,

wpass filter will isolate the 20 Hz component,

or 220 Hz, Alo

To understand how mixing works, we consider the following well known

trigonometric identities:

cos(a + b) = cos a cos b - sina sinb (27)
cos(a - b) = cos a cos b + sina sinb (28)
sin(a + b) = sina cos b + cos a sinb (29)
sin(a - b) = sin a cos b - cos a sinb (30) |
i
18 |
_ g " =
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Adding Eqs, (27) and (28) and dividing by 2 gives

cos acos b =% (cos(a 4+ b) + cos(a - b)) (31)
Subtracting Eq. (27) from Eq. (28) and dividing by 2 gives

sin a sin b =% (cos(a - b) - cos(a + b)) (32)
Adding Eqgs. (29) and (30) and dividing by 2 gives

(sin(a + b) + sin(a - b)) (

(V']
(O3]
-

Nof—

sin a cos b =

From Egs. (31) to (33) we see that multiplication of sinusoids iranslates to the
summing and differencing of their arguments,
To see how Egs. (31) to (33) may be used, suppose a radar is receiving

an c¢cho of the form

e(t) = cos (w, t) ( 34)

where

n

W
i

constant frequency

t = time

L.et us split the return signal into two channels, as in Fig, 12, We
multiply the top channel signal by cos(.  t) and the bottom ¢hannel signal by

sin(uw,t), where this time | is a constant (requency of our own choosing,

b - o - ’ . e : ST Tt
L; <3 Tl 5 =T : :
. _.. .




cos (wzt)
—-1/2 [cos (w, + W)t
+ cos (w1 - wz)f]
cos (w1f)
—1/2(sin (0, + W)t
+sin (W, = wy)t]
sin (wzf)

Fig. 12, The First Stage of Mixing

As is seen from Eq. (31) and Eq. (33), each channel output is a sum of

sinusoids of high and low frequencies:
1 1
> cos (w, +w2)t + 5 cos (w, ""’2)t (35)

for the top channel, and

% sin [‘“1 +w2)t] +% sin [(w1 - wz)t] (3G

for the bottom channel,

L.et us supposc that (w, - v.:) is the low (positive) frequency. Then if we
lowpass filter each channel we obtain the outnut in Fig. 13, Normally, the
term mixing refers to the use of the top channel, but if we use both channels as

in Figs. 12 and 13, the net result is as shown in Fig, 14, and consists of two




LOWPASS
1/2 cos (w, +w, )t +1/2¢cos (w, = w it -
Vo2 v FILTER
TOP CHANNEL
1/2 o8 [[(w, = w,lt]
1/2sin{(w, = w,)t]
BOTTOM CHANNEL
LO
1/2 sin (w, + Wt + 1/23in (w, - wylt FIL:VEI;ASS

Fig. 13. The Second Stage of Mixing - Lowpass Filtering

- (wzt)
LOWPASS > ot [(W1 . “’2)']
FILTER
| - CHANNEL
cos (w,t)-——-’
LOWPASS & sin [(w‘_ “’2)']
FILTER
Q - CHANNEL
sin (uzt)

Fig, 14, Offset to I, Q Conversion, Difference Frequency
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soparate outputs, known as in-phasc (1) and quadrature (Q). Note that in

Fig, 14 the scaling (amplitude) constants have been removed,

The ordered pair of real numbers

:‘.05 [(\ul - w,)t] . sin [(“’l ) “"‘)t]t

is usually abbreviated by mathematicians as

R [ -wot]

where

i=N-1

the exponential function

h

o
Thus the net result of mixing with a sine and cosine channel is shown in Fig, 15
as a complex output signal with a new frequency.

Note that it would be just as casy to use a highpass filter instcad of a
lowpass filter: in this case we would obtain the sum frequency instead of the
ditference frequency and Figs, 14 and 15 would be replaced by Figs, 1o and 17,

We are now ready to see how mixing is used to prescerve coherency (i. .
SAR system, Utor the transmitted pulse we use

azimuth phase information) in a

a lincar I'M chirp modulating a high frequency ca rrier wave,

1 :
In peneral, for real 0, we put

0
o

cos Ot j sing

which is formally cquivalent to a cartesian pair

iy N
O ‘\'os 0. smU\

yrovided we operate on the components pro sorly in subscequent al rebraic mani-
R

pulations,  Note that the (1) sign incos 0+ jisin 0 is purcly a formality: real
We have, for example, 4 4 =7 but

and imaginary numbers Udo not blend, "
’ The equivalence is vaiid provided

V) stays g, and is cquivalent to (5, )
we define multiplication by (a, b Cd) = (ac - bd, ad 1 he),
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Fig .
. _ . - T T A :
: Suppose that when time t satisfies -5 = t= 75, the radar transmits a pulse
- defined by
"
at” L
s(t) = cos( — teat)e ( 38)

l, Tt -1-,- the radar

-

ant, ) Outside the interval -

&

(Hore o is considered a const
13

is silent, and mercly listens for o return,  (Note: We tmay assume the sipgnal

b e e e, 4 S
;
e, et ™,

direct modulation on a constant frequency

in g, (38)is gonerated either hy
*
. e . at
cAarrier wave cos (u-”n‘ or by mixing the signals cos \—— and cos (““l)‘. the

the details of the mixing operation,)

o

interested reader may carty through

Obsery e also that Py o 18) detines o linear AL wavetorm, A plot of its tre-
QUENCY A CEsUS time is shown in Fig, 18: 1t is like Figs 8 but displaced voertically,

g4
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Fig, 18. linear FM on a Carrier - The Frequency Plot

By way of example, it may be helpful to know that if we define the carrier

frequency {, in Hz by

then a typical value of f, for a real radar might be 1275 MHz, A typical value

of { might be 1284 MHz; f
max n

\in might be 1206 MHz, The signal bandwidth

would then be f‘ - f

.= 1284 -~ 1206 = 18 MHz,
nax min

To continue, we require that even when Eq. (38) is not being transmitted,
a stable local oscillator (STALO) continuously generates a carrier waveform of

frequency w, = & f,» This waveform is generated in two channels, producing

signals CI (t) and CQ(t), where

CI(t) cos(unt) (39a)

CQ(t) 8in( wut) ( 39b)

for all time t,
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In a SAR transmitter, the STALO must be extremely stable because the

&s

carrier wave is mixed with the returning radar echo. This mixing provides the
critical "azimuth phase factor™ ¢ in the following way, (The use of the azimuth
phase factor is given in section IV,)

Suppose the tesrain is dark except for one bright point target PT on the
ground at a distance R meters from the radar transmitter. (This distance is
called slant range, see Fig, 3.) It takes the signal in Eq. (38) a certain time St
to traverse the round-trip distance 2R to PT and back., (We make the simplifying
assumption that the aircraft does not move between transmission and subsequent

echo reception: thus the radar sigral travels R units in both directions.) Since,

» 3 .
. E
el A e o P kI | et ™ _}u-»—; e e T

3
S

at the speed of light ¢, this time of traversal is given by the relation

P

-
-
~
'

| 8%
——
7

we have

; 1
o
e iem

»n
ot = =N (10

Thus the leading edge of the pulse, which returns ot scconds after its trans-

C . . \ T T 2R o .
mission, is received at time -— + ot = -5+ ==, Similarly the trailing edgpe
.- - N ‘
I 2R
R of the pulse returns at +5 4+ ==, after which time the radar receives no echo,
k Thus in the interval
- T 2R T 2R
Tt v (41)
| the radar receives the echo e(t), which is the transmitted signal delayed by 1
[ :
ot secotds: |
]
2R M a 2R
o(t) = As (t - —) = A cos ( [t -1t 5 |t - (+42)
b [§ W0 (S - (S )
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(The letter A denotes a positive amplitude factor proportional to the target's
reflectivity, or ""cross section.') (Note again that the correctness of (42)
depends upon a simplifying assumption: we assume that R does not vary with
t during reception of a single pulse echo. Without this simplifying assumption,
the range signal mixing would be complicated by a "doppler offset frequency"
which is normally neglected in SAR processing.) The returning ccho is divided
into two channels (I and Q) for separate mixing with the carrier components
CI(t) and CQ(t). The results are indicated in Fig, 19,

As before, we represent the pair of outputs I and LQ from Fig. 19 as a

complex exponential er(t); (the subscript r denotes range signal, since the

2
R,,0a, R
?)02('-c\]

l

C'(” B~ 11 (\;'0” \ \ CQ(" : sin (“'ﬂ”

e(th - A eos[“-o(t -

T
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FILTER FILTER

wo 2R 2 wa 2R 2
Acm[—-—o—‘gﬂ—zs\] A sin | - 9——0°u-2—“\
¢ 2 c c 2 c

(1-CHANNEL) 1Q-CHANNELY

Fig, 19, Result of Mixing the Returning Radar Foeho With

the STALQO Signals CI and (‘Q
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independent variable t is ''oriented'' along the ''range’’ direction. Note that e.

is the return from a single pulse).

ep(t) =Aexp{j ( “°:'R +5 (t-z-c&)z)= (43)

a+b

Using the relatione = e eb we may rewrite Eq. (43) as

e (t) = A exp ;j ( ZQQ’R): exp : i5 (t - ZTR) 2{ (44)
where
e (5E)
is the azimuth phase factor and
o = - (46)

is its phase. Wce remind the reader that Eq. (44) represents the demodulated

ccho only on the interval

lu"‘]

2R
c

o)

2
4+ —
<

+

2t

Qutside this interval er(t) is identically zero,

We make first a few observations about Eqs, (44) to (40). First, the
azimuth phase tfactor is independent of time t of reception, As long as the
receiver is receiving signal from the point tarpet PT, the phase factor kq. (45)

will appear as a constant term with phase given by Eq. (40), Next, the azimuth




- e =

e

B ,} ’,‘

ST T T kLA —*‘

phase in Eq, (40) may be rewritten in terms of wavelength \, To see this,

note that

2w 2rf R
- - O - _ \J
¢d ¢ “ K (§
and so
_ 41R
¢a = - (47)

where we have used the relation \f0 = ¢ (cf. (23)). Finally, the factor

o ‘ a 2R ':'
¢, T exp lis (t - —\_) (48)

‘

is known as the range phase factor and we denote its phase by ér:

R
_a 2R\"
6 =3 (t &l ) (49)
Note that cbr is of the form
a2 50
¢LFSY (50)
where
3
y=t-"—5=t-ﬁ (51)
and
B = =R (52
R

is a function only of target separation R from the radar,
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D, Sampling

Up to this point we have assumed that all signals have been analog.
Actually, sampling can take place at a variety of points within the system;
we choose to introduce it right here for simplicity, Thus we assume that the
analog signal Eq. (44) is sampled as it is produced,

The subject of sampling is well treated in digital signal processing texts.
The main issue is sampling frequently enough so that all the information in the
analog signal is retained., Such ideal sampling is possible only fo: certain
types of signals, One such type is a signal having a continuous Fourier
transform of finite extent along the frequency axis; the interested reader may
find the corresponding "Nyquist sampling theorem' in [1] pp. 26-30. Another
such signal is one whose Fourier series has only a finite number of terms; a

version of the Nyquist theorem for this second type of signal is found in (2],

The gist of these theorems is that we van keep most of the analog infor-

mation of Eq. (44) if we sample it at sampling frequency fs' where

al

m

f =
S

(53)

o

Referring to Fig, 18 we sce that f s the vertical extent of the frequency
graph, expressed in Hertz, Thus we are saying we must sample the complex
echo c-r(t) at o frequency equal to its "bandwiarh, ' For further discussion of
sampling theory and alternate definitions of bandwidth, the reader is referred
to {11, {21 13,

The sampling period At is defined as the time interval between adjacent

samples: itis the reciprocal of t’s; hence

o
At=ﬁ (54)

|t e e camr = m——

e e r———
.
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(Normally we sample at a slightly higher frequency than the bandwidth, and At
is correspondingly smaller,)

We now reexamine the situation thus far, We have followed the radar sig-
nal from the transmitter to a point target and back again, and seen how the sig-
nal is mixed down (demodulated) to baseband. (''Baseband'' implies the signal
is centered about zero frequency; the carrier frequency w, was removed by the
mixing of (44)). Next the signal was digitized (sampled) at intervals of

At seconds. All of this manipulation is concerned with the return from a single

transmission or pulse, If we knew the terrain had only one point target at

range R, we could begin sampling e_(t) at I + Z—R and stop sampling at
P r . P P

2
+§— + %13 . The sampling window would then be T seconds wide, the width of
the range chirp, However, targets at a variety of slant ranges will be return-
ing radar echoes; thus we must increase the size of our sampling window to
accommodate returning pulse echoes from across the entire ground swath illu-

minated by the antenna in the cross-track direction, Thus we may assume we

start sampling at time T1 . We take a new sample every At seconds until time

2
T, . at which time we turn off the sampler. We assume Tl N -% + ::B and
T 2R . . . -
PSS b T s T,. The time interval over which we sample is thus AT = T, - Tl :
& - o
the number of samples is N where
\ AT
N = 22
h KX (55)

Time T, is the time of reception of the leading edge of the echo from the inmost
point on the swath, and T is the time of reception of the tail of the echo from

the outermost point on the swath,

i

e e P N
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If PT at slant range R is the only reflecting target, then our array of N

samples looks like Fig. 29,

—

The first 0 in Fig, 20 corresponds to t = T1 . The last 0 corresponds to

t=T,. There are N entries; hence we may denote them as a vector

-

v = :v(l), v(2), «.., v(N){. Let us suppose the kth element of v is the beginning

el

of the echo from PT: v(k) = e. (-% + ZC—R) ; we also choose ¢ so that
= I
vik +¢) = er(

>+ TR) corresponds to the end of the echo return from PT. Then

e

we have v(n) = 0 for 1 < n< k and vin) =0 fork+{¢ < ns N, provided PT is the
only reflecting target, Note that v(k), v(k+1l), ..., v(k+?) all have signal data
from PT, How can we ""compress' v(k), ..., v(k+{) into one or just a few

samples so as to obtain fine range resolution, as promised earlier This com-

pression, it turns out, is the function of the cross-correlation process, and is

discussed in the next section,

{k - 1) ELEMENTS £+1 ELEMENTS
A e
- \
T ,R T, 2R -T,2R T 2R
[0,0, .“Io’.f<7 “’—c—)"r(‘—z- *—C—+A'),er(‘f +?‘2A’),...,er(5§?)'ol 0, ..‘lo]
~" —
N ELEMENTS
| NOTE: IN THF ABOVE VECTOR, e (3 + ) =¢ (L2, p4)
T ) * e v2 ¢ P V277

<

g i N : - . S
- S
N
. e e e N
e T e i e

2o
<=

T c

Fig, 20. Array of Samples from a Sitgle Pulse Echo from a
Single Point. Target




[V

9

¢
I I N N e e i

111, Vectors, Matrices, Cross-Correlation and the Range Processing

In this section we develop the ideas of vectors, matrices and cross-
correlation, While the reader with sufficient background may wish to skip over
the explanation on vectors and matrices, the section on cross-correlation should
be read carefully, Facts about cross-correlation that are especially relevant

to SAR processing will be emphasized,

A, Vectors and Matrices

A vector, as described in the previous section, is simply a list of numbers
in a particular order, Thus (1,0, -3) is 2 vector having three components, It
is distinct from the vector (-3,0,1), The vector v from the previous section

has N complex components:
vo= (V(l), V(Z), ¢ 00y V(N)) (56)

It is customary to denote vectors as in Eq. (5b6); the parentheses encluse the
whole vector and separate parentheses are used to count the elements of the
vector, Thus v(7) is the 7th element of v.

Vectors may be added if they have the same length, Thus if

u = (u(l), oo, u(N)) and v (v(l). oo, v(N)) then we define the vector u+v

by

(u + v)(k)

u(k) + v(k) fork=12,.,..,N

Just as naturally we may multiply a vector by a scalar (a scalar is justa
number), If @ is a scalar and u = (u(l), ..., w(N)) is a vector then the

vector au is defined by

2
4
.

(eulk) = a X u(k) fork =1, 2, ...,

>3
2




A matrix or array is just a list of vectors of the same length, Typically
the elements of a matrix are identified by affixing row and column subscripts;
thus mij might be used to denote the elemant in the ith row and jth column of a

matrix M, For example we might define

so that m, = -1 and m12 = 3,

The reader will note that if the digitized echo return from one radar

pulse forms a vector v of length N, then the collection of returns from K pulses

d forms an array of N X K elements. We will (arbitrarily) assume that each
. @" pulse is represented as a (vertical) column in the matrix, so that the row index
&;l is related to the time of reception of a sample from a single pulse, while the

W column index identifies the particular pulse in question,

B. Cross-Correlation and the Range Processing

. { Let

c
|

(w(l), w2), ..., u(m))

and

<
L]

(v(1), v(2), ..., v(m))

be two vectors of the same length m. We define their cross-correlation vec’os

Cuv’ also of length m, by

Cuv(k) = u(f) vik+d) fork=1,2, ..., m (57)

34
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| where

(n-1) mod m forn # m

= 9
SNPSGP J

n means
mforn-m

so that

(k+¢-1) mod m for k+¢-1 # m

kil =<

m for k+¢-1 = m

“

Q¢

For example, if

8

B
R et o

u=(1, -1, 0, 0, 0)

v=(0’ 0) 1) -1’ 0)

then
Cuv(l) =1X0+(-1)><0+0X1+0><(-1)+0><0=0
) Caof?) =IX0+(-1)X14+0X(-1)+0X0+0X0= -1
a a3 FOX0+0 X0+ 1 X1+ (-1)X(=1)+0X%X0=2 (58)
Cuv) = IX D+ (-1)X0+0X0+0X0+0xX1 = -1
Cu\,(S) =1x0+(-1)x0+0x0+0><1+0><(-1)=0

In other words, to cross-correlate u and v, we successively slide v "around
itself” and then multiply by u and add. as in Fig, 21,

Note that Cuv has a maximum at Cu\~(3)' indicating that the third sliding

position of v gives the "best match' with u,




v ‘ (‘I-" o, o, 0) (ll-‘l ol 0, 0) (Il -|l ol or 0) ('l -II 00010) (ll-ll ol 0, 0)
MULTIPLY
v ¥ ©01,-,0 | 000-,1 | ¢,000n |a-1,000 | ©1-1,00

-p— ADD ~—>

Cw(l ) Cuv(z) Cuv(3) Cuv“) Cuv(s)
0 -1 2 -1 0

uv

Fig. 21. Cross-Correlation of Vectors u and v

The cross-correlation operation is linear, This means that if u, v, and

w are vectors and 2 is scalar, then
= aC (59)
and

u, v+w = Cu, v * Cu,w * (60)

To prove Eq. (59), we use Eq. (57) to write

m m

C (k) = u()v(k+¢) = QZ w()v(k+d) = OCu v(k)

au, v
v =1 ‘=1

I3




Similarly, Eq. (60) is proved by writing

m
Ca v +w () = D u(d) [(v + w)(TTR)]
=1
m

= z:u([)) [v(m) + w(m)]
?=1
m m

= D () VTR + D u(l) w(lTTR)
=1 = |

Cuv(k) + Cuw(k)

As an example, the reader may verify that if u = (1, -1, 0, 0, 0),

| v=(0,0,1, -1, 0)andw = (0, 0, 0, 1, -1) then
- Cypy =(0. =3, 6, -3, 0)=3C_ _=3x(0, -1, 2, -1, 0)
and
® Cu.v+w =Cu,v +Cu,w
=(0, -1, 2, -1, 0) + (0, O, -1, 2, -1)
=(0, -1, 1, 1, -1)
| Example

As an example we consider the linear FM waveform discussed in the pre-
vious section, Assume that a short linear FM return echo (of say 2M + 1 samples,

where M is determined by the range pulsewidth T and the sample period At),

37
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3

from a point target is embedded in a much longer vector v (of say length N)

consisting of all the terrain echo samples from a single pulse. We denote the

e

2M + 1 nonzero linear FM samples as

B

s(-M), s(-M + 1), .... s(-1), s(0), s(1), .... s(M)

Thus for k = 0, 1, ..., £M, s(k) represents a sample {rom the return in
Eq. (44). To see how we may conveniently express (44) in terms of k, the sam-
ple index, let us translate the time axis in (44) according to eq. (51), so that

time y is 0 in the middle of the echo return (44). Set

_o-,' B = A exp :l (--Z:—OR)= (61)
2 and
- o= -3 (ay” (62)
where
at= 22 (63)

is given by (54), Then we have, for k = 0, %1, ,... =M,

2
-ibk
o

s(k) = B (64)

(An casy way to sec the validity of (v4) is to set time y = At in (44), correspond-

ing to k=1 in (v4), Both b in (04) and a in (62) are commonly called the chirp

'8
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rate. For example, in (44) or (10), the rate of change of radian frequency with

respect to time is

¢|| (t) = a

(cf. eqs. (12), (13)).

We wish to cross-correlate v with another vector u of similar form. NMNore

specifically, u contains the conjugate terms to Eq. (0l). with B replaced by

unity, Thus somewhere in u is a set of terms
S(-M), S(-M + 1), .... S(M - 1), s(N\D

where

A
+ibk”™
o

s(k) = for k=0, %1, ..., =M (15)

All the remaining terms of u are 0, (The vector u is also of length N, )
Except when the s terms in v overlap with the 3 terms in u, the cross
correlation vector elements are 0, When there is overlap, we may choose the

index origin so that the index k runs from =\ to +\;

Y kS 0
C (1) = Z B PR (abtk+d)

k=-\

(on)

At first sight, it would appear that (eo) gives the correct formula tor C\u(( 1)

for all ¢, However, recall that stk o) is nonzero only for

th e e e e |



For k ~ M - ¢, s(k+f) =0, Thus the highest summa-

(k+2) = 0, %1, ..., =M,

tion index in (66) is not M but M-{, and the correct formula for the finite dura-

tion discrete linear FM cross-correlation is

M-t 2 2
C  (0+]) = z | pe Pk Gtiblk+?) (67a)
=M

for the s and s overlap region

2N = (¢41) s 2M

and

C. 041 =0 (67b)

otherwise,

We show next that IXq. (67) may be simplified to

7
B sin [Eb (M + l,-) ¢ - ba"l
\ = ) : AN <2 :
C\'u('+1) sin(bf) for -2 s (f+1) = 2M (69)

The reader unconcerned with details may skip to Edq. (75).

Obsecrve first that Ea. (07) simplifies to

M-y ,

2
z itk b (70)

k=-Nt

40




ibe?
Factoring out e we have
> M-¢
. : )
c (141) = Be?Y x z : I 2Pkt (71)
vu
k=-M

The right hand geometric series sums to the term in brackets below, which

shows
Y- -j2bM{ ji2b(M-2)¢ i2bi
C (141) = Berg e J - eJ ( ) X e
vu 1 i12b¢
-e
[ . 2
- “2h{
) BeijZ o i2bNM{ . e*J(ZbMHZbZ 2b{7)
- 1 j2b¥
i -e
(72)
From both numerator and drnominator we factor out ejbf to obtain
Si2b(MAB0 j2b(Ms)e 2
o2 b ) d 2 -j2be
C. (¢+41) = Be!" | £ =B X e (73)
vu -jb¢ jbt
e -e
G e
Factoring out e"lbk from the numerator yields
2 | -izbMsdyonp i e -ibe’
_ jibd® .ibi“|e - e
Cvu(u7+l) = Be e T 57
e - e
f [Zb(l\l%-):-bx’z] -j [Zb(I\H-E-){-bRZ]
_Be L - ¢ | ©
iby -iby
e -e
(74)
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so that finally

B sin [ZD (M + %)Q - b?z]
CW(Q+1) =

sin (b{)

as promised,

(75)

Note that Eq. (75) has a peak magnitude of |B + (2M + 1)| when ¢ = 0,

(Actually Eq. (75) is undefined at { = 0, but Eq. (67) may be easily evaluated

when £ = 0,) Also the first null of C,, 2ppears when / satisfies

2b(M+%)2-b22=t

or

2
b >

or

1

?2-2(M+—)L’:%=0

2

By completing the square we find

s

-2b(1\4+l)e £+ 1=0

2
y 1 1
x-M+Z-\/(M+2) -

corresponds to the first positive null. Note that when [b| is large, (-0,

fact, for fairly large |b|l, we may write

TT/bI (76)

In
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where

m

< 1

ol (e +3)°

Using a Taylor expansion (as illustrated for example in Eqs. (85), (86)) we

obtain

\/(1\1+-;-)2-|%|:(1\4+%) 1 - T 1)?_ (77)

|2b| (M +5

Egs. (76) and (77) show that at the first null,

a\m1+%-(1\1+%)+ 1
= - 2b (:\1 + ;)
or
C. r - - | -
N —t— - (78)
|2b] (M - 17) ShM

I'or values of ¢ greater than the ragnitude of kq. (73) is

[2b] (.\1 -

—

small compared to its magnitude for values of « less than . Thus it

1
121 (.\1 -3
3
we plot the function i('\‘u“\ ~1)| versus . we obtain the response of Fig, 22,
We sce from Fig., 22 that the cross-correlation of the return ccho with
the conjupate exponential is the key to retriesing our lost range resolution,

Por. while our transmitted chirp was 2M - 1 sataples wide, the result ot cross-

3

correlating is only 2% samples wide, essentially,

120 (.\1 : %) vt 'l (x1 - —f—)
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Fig. 22, Plot of Square of Absolute Value of Linear FM
Cross-Correlation Function
In fact, the width of the half-amplitude (3 dB down) part of the curve in Fig. 22
(shown with the double arrow «—) is only I-Z—bn—ﬂ—l , approximately. We define
this ""half-width' loosely as resolution. More specifically, Fig. 22 shows the
onc-dimensional response to a point target, We can replace the abscissa units

"¢" in Fig, 22 by any convenient abscissa units desired, such as time t:

t = (At
or slant range r:
ct
r =5
44




If we use the t-axis, the half-width in t-units is called the time-

resolution,
The half-width in r-unitsis called the slant range

spatial resolution, We also
say that the dimension of the h

alf-width corresponds to one resolution cell,

When we recall that

b=-%(ap?

from Eq, (62), then Eq. (78) assumes a special form for analog linear FM
signals, For, if we let [’r be the number of output samples within a range
resolution cell, then

When we realize that l’r samples correspond to a time

interval of t’rAt seconds,
we conclude that

TAt .
z"b'M, At

(79)
is an expression for the time resolution of the radar, Since
a 2
Ib] = 5 (At)
we have
. . < | TAt
Time resolution ~ ’.’.—bﬁ.,
~ - At
= ~
2x (%) an®
. , Q=
Time resolution IN(AT)a {80)

45




Now 2ZM(At) is the approximate linear FM pulse duration and a is the radian

frequency sweep rate, so that (2M(At)a) is the nulse radian bandwidth, ~Thus

2M(At)a
2

is the chirp bandwidth in Hz, and the time resolution (80) is the

reciprocal 1/BW of the chirp bandwidth in Hz! Now we can see why the term
"compression' is used to describe the radar cross-correlation processing.
After cross-correlation, the signal looks like Fig. 22 and has essentially a
mainlobe time width of =1/BW. However, the original pulse time duration was
T. Dividing the original pulse duration by the '"processed' pulse duration gives

the '"compression ratio'' CR:

CR:T/(I/BW) = T x BW (81)

Thus the compression ratio is the time-bandwidth product,

We summarize: We send out a linear FM chirp of Hertz bandwidth BW,
We wait for the echo which we then correlate with a conjugate replica of the
original chirp, embedded in a vector of length equal to that of the echo vector.
If a point target is in the reflecting field, it will produce a lobe structure as in
Fig., 22, with time resolution _B_IW + The height of the mainlobe in Fig, 22 will
be proportional to the reflectivity of the point target (amplitude factor B), The
actual peak placement along the abscissa (labelled "0" in Fig, 22) depends
directly on the slant range R to the target at the time of pulse transmission,
If several point targets are found at varying locations along the image swath,
linearity of the cross-correlation function shows they will produce several
separate mainlobes, appcaring at several different places in the output cross-

correlation vector, as in Fig, 23,
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Fig, 23, Cross-Correlation Output When Two Point Targets Are
Found at Different Slant Ranges

Note from Eqgs. (01l) and (09) that prior to taking absolute values, the

curves in Fig, 23 all have azimuath phase factors of the form

:\x - = )x -
exp l i exp - |

where R specifies the target slant range (see Eqg. (75)). And, in fact, absolute

‘ .zﬂga' ‘ -4”Rl
s \

values arce not taken right after range correlation, If they were, the all-

important azimuth phase factor would be lost and the azimuth resolution would
be limited by the antenna azimuth beamwidth, as in I'ig, 2, llowever, the only
reason we took absolute values in the above explanation was to give the reader

a picture (Fig, 23 orf what the range procvessced signal looks like,
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We are almost ready to begin the discussion of the azimuth processing,

However, it will be useful to first characterize the range correlated return
ccho a bit more fully, Supposc there is only the single point target PT in the
beam when our single pulse is transmitted, Then if ¢ is the actual index of the
cross-correlated return echo, the actual form of the cross-correlation result
is not Eq. (69) but is rather a translated version of Eq. (69), in which ¢ is

replaced by (¢ - ¢q). We may write

2
[2}) (1\1 + %)(; - q) - b(d - q)“]
C\_u(r) = B3 sin sin (b¢ - al: ] (82)

The translation index q (related to B in (51)) reflects the actual slant

range to PT, and is thus a function of R, Recall also that

4l
B = A exp ;—_l \\:

is also a function of R, Thus the location of the peak in Fig, 24 is a function ¢f
, . . 45 R . .

R, and so is the azimuth phase |- - that is attached to every point on the
curve in Fig, 24, The azimuth phase is independent ol index « (¢f, Liq. (82)).

From the last remark it may be evident that optimum azimuth processing

should make use of every point on the curve of Fig, 24, for every pulse echo

inwhich 'l returns o sipnal,  Such processing is currently regarded as too

complex, however, and only the qth point is customarily used for the azimuth

processing,  We will return to this point later (Fig, 27).
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1v. The Azimuth Processing

The range processing involved operations onthe information withina single

pulse echo, The azimuth processing will combine the information from a number

of echoes, The azimuth phasefactor ¢, = exp ;j (- Z:OR): of Eq. (44) is the
key to this part of the processing. Recall that this factor arose from the mix-
ing operation on the return echo, Although the azimuth processing is difficult
to implement on a computer, it is conceptually simple, especially after the
range processing has been understood.

The first thing we have to do is examine where the data from a point
target is found within a sequence of range correlated echoes. For simplicity,
we assume the radar is mounted on an aircraft traveling past a point target PT

on the ground. (The more complicated case of nonlinear or orbital motion is

easily understood if the aircraft scenario is understood.) In Fig. 25 the slant

TIMES OF PULSE

TRANSMILSION
g8

/ c

R o — ?(IGHT

-M+ PATH

PT
Fig, 25, Slant Ranges as a Function of Aircraft
Position Relative to Target
50
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ranges to the target are indexed as a function of the various positions
successively occupied by the moving aircraft, We assume that only during
pulses (-M) to (+M) does the beam illuminate PT, Thus there are (2M+1) pulses

carrying information about PT, We have labeled one slant range specifically

R, because it represents the point of closest approach, The important thing to
note is that the slant range R to PT changes with each pulse, We can express
this quantitatively as follows,

In Fig. 26, choose the x-axis along the flight path so that x = 0 when the
aircraft is at the point of closest approach to PT, Then for any A/C position x,

we have by the Pythagorean theorem that the slant range R to PT is given by

2 2 .
p R = R, + x (8)
o F£
o x
P N < A 'C FLIGHT PATH
e IEE R R —&= x - oxis
Ko R
W
PT
{
|
S I'ig., 2o, Relationship ot A C Position to Slant Range
."1
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In a practical SAR, x is very small compared to R0 because we only need
to consider values of x when PT is illuminated by the narrow azimuth beam.,

Therefore

X
X .1
RO

and we may write Eq, (83) as

2

R=R0\/1+ (LO) (84)

Eq. (84) has a radical of the form

Fiy) = J1+y (85)

where jy| « 1. Thus we may expand F(y) = \/—li—-i-*y in a Taylor series about

I

R e
i

. y = 0, Taking only the first two terms we have

Ely) ~ 1 +>2’- (86)

as a good approximation when |y| ~ 1.
2

Substituting y = (R;) in Eq, (84) we have
0

or

(87)

which gives slant range R as a function ot A C azimuth position x,
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In Fq, (87), the variable s is lincarly related to the pulse index m, where
-\ <o M, The pulse index mis in turn associated w ith the slant range l\m
in Iig, 25, When the aireralt is at position x, the slant range given by g, (87)
will determine the location of the range corrclation peak in Fig, 24, In partic-
ular, g in (82) will be determined by R which is itselr a quadratic function of x,
Thus if we examine the sequence of range corrcelated echos associated with PT,
we see that the location of the peak in Fig, 24 will vary with the pulse index, as
in Fig, 27 (where M = 3), Figure 27 represents the display of range correclated
data over a scequence of pulses during which P71 is iltuminated. Each echoin
Fig, 27 is a copy of the sinusoidal wavefornvof Fa. (75). where the location of
the peak in Fq, (75) is now a function of x (i, .. the pulse index)., As mentioned
carlier, (eoe.. po 7 and p, 50), we wish to combine the information from all

sceven pulses in Fig, 27 to produce one range line of imacery, Of course. we
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wish to choose the strongest possible signals from PT in each pulse. To
obtain the strongest signal from PT, thus, we must take the dotted samples in
Fig. 27, These dotted samples follow an approximate parabola, as shown by
Eq. (87). It is these dotted samples which we will extract and use for the

azimuth correlation of PT, Associated with each dotted sample is an azimuth
phase factor of the form:

B = A exp

\

;J—‘*—“—R{ (88)

(Recall from Eq. (75) and the subsequent remarks that each dotted sample has

also a magnitude factor of (2N +1.)

R is, remember, a function of azimuth position x. Thus, placing the dots

of Fig., 27 in an "azimuth" vector
8

Az = (Az(1), Az(2). ..., Az(N))

where

N = 2N+ ]
we may again examine the effects of cross-correlating Az with a vector Az whose

phase factor is the conjugate to Eq, (88), i, e.., at position x, T has phase factor

(cf. Eq. (81)).

If we recall that
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from Eq, (87), then we see that the correlation function takes the form

2
exp :H L (Ro + %‘RT)): (89)

Let us throw the correlation function into a more ''digital'' appearing form,

Since presumably aircraft position x is related to velocity v and time t by

x = vt (90)

(provided t = 0 corresponds to the point of closest approach), we have for

Eq. (89)
) 2 )
‘.-hr oox° ) _ ‘.-}n’ votT I
°“‘pl-' \ (Rn f ZRO)‘ = ""p(-'T (Ru " IR, )‘ (91)
Let
PRF = pulse repetition frequency
so that

I

At =

RE - pulse repetition period

is the length of time between pulses, (Recall that in section I, At denoted the
range sampling period; here however we use it to denote the azimuth sampling
period,) Thenif k = 21, 22, 23,

eeo, 2N the azimuth reference function of

Fge (91) is given as a function ot discrete multiples ot time At by




In Eq. (92), the constant phase factor

is usually omitted.

Now we can see that the same correlation process as described in Sec-
tion III may be used. In short, the vector in Eq. (92) is embedded in a long
vector, padded with zeros, called the azimuth correlation function. The con-

jugate (received) signal, Az(k), given by

v\ 2R

) 2
Az(k) = A exp :-j kil (R ' ‘—%ﬁ-ﬁl)' for k=0, 21, ..., 2N (93)

is embedded in an equally long zero-padded vector, Note that the Az(k) are the

dots in Fip, 27

4nR0'
x|

which may be removed, then we see that the essential cross-correlation is

If we observe that Az(k) also has a constant phase factor exp l-j

betweoen

¥ )

oY s ekmant
Astk) = exp Q N X “)RU ‘ (94)
and
b ) )
\hl\h At -
NAz(K) = exp ~1 — )
Ve(k) = exp =i 5 N R, | (95)
Figqe (U3) is of the torm cxp{mk“} where
b 4 ~ .\;—._(_._t_):. !
A 2R
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Thus we may use kq. (09) to conclude that the result of azimuth correlation

has the form

(90)

where now the factor B is just the amplitude factor A, From the results of
Section III, we know the time resolution of Eq. (906) is the reciprocal of the
azimuth bandwidth, Multiplying this time resolution by v, the aircraft velocity,
gives the azimuth spatial resolution.

More specifically, we know the azimuth doppler chirp rate in Eq. (91) is

the second derivative of phase, Since azimuth phase d>_1 is
<

) y D
_2nnTt”
%2 ¥ TAR,
the chirp rate is
N 2
T
= - Q
v (97)
If the radar illuminates PT over a time T,‘, the radian bandwidth is
R
. 4avT g
RBW = R, X Ia
and the Herte bandwidth is RBW v\/.!“ or
>
W= S * (98)
BW, = ™ T, ‘

LN
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The time T is called the coherent integration time, It is related to the physical
a
distance L. over which the aircraft travels whilc illuminating PT, by the simple

formula

L =vT
a a

(The length La is called the synthetic aperture length.) Therefore, Eq. (98)

may be rewritten as

N (99)

Assuming the antenna beam pointing direction is fixed, the maximum possible
length L_i over which PT is illuminated is the same as the width of the azimuth

beam on the ground., This width, from Fig. 2, is given as Roﬁa. Thus for the

maximum value of l"a‘ Eq. (99) becomes

2vR B
o " a
W =
BW R
I.et L now denote the physical antenna azimutl dimension, Since }3_‘ = % .
(¢f. Eq. (20)). we have
2v
BW_ ==—, (100)
a L.
Recalling that time resolution is given as [T\I\— . wo have then
At =-s (101)
a Qv
as the azimuth time resolution, and \'.}.t,‘. or
1. >
Ax = = (102)
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as the best obtainable azimuth spatial resolution. L is the physical antenna

azimuth dimension,
If, on the other hand, we use a shorter length for L, than the maximum
possible synthetic aperture length, then Eq. (99) implies a time resolution

value of

At = —— (103)

and an azimuth spatial resolution of vAt, or

AR
Ax = )10 (104)
- 4a

as a function of synthetic aperture length La' The reader will note from

Eq. (104) that the best azimuth resolution is obtained with the longest synthetic
aperture length La. When the longest possible synthetic aperture is used.

Eq. (102) applies and the resolution is limited by the physical antenna azimuth
dimension L. Therefore, in a SAR the smallest physical antenna leads to the
best resolution.  As an example, the SEASAT spaceborne SAR physical antenna
is 10 meters along the azimuth., The synthetic aperture length, however, is
more than 4500 meters.,

A few remarks are necessary here to clarify the simplitying assumptions
leading to the azimuth impulse response given by Eqo (9o), L, (9v) was
derived assuming a point target P T is alone in the image field and produces a
lincar I'M signal embedded in a longer vector of zeros, Since ecach point target
along the azimuth produces a distinct nonlinear track (like the fishbones ot
Fig, 28)itis evident that the actual cross-correlation process must be per-

formed with care: for example, readers familiar with FE L cross-correlation

i
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Fig. 28. Fishbone Data Traces of Successive Azimuth Point
Targets at the Same Slant Range

techniques will recognize the impossibility of performing ~ fast correlation via
an FFT for the azimuth processing because the ""fishbone' data traces in

Fig. 28 arc not colinear, If the data samples of cach "fishbone” are used
separately to perform a time domain correlation, however, the absence of
interfering data from the neighboring fishbones will actually result in a “better”
impulse response than that depicted in Eq. (9¢).

We finally observe that the two-dimensional point target response
("impulsce response’) of a synthetic aperture radar is the product of the
onc-dimensional responses of (79) and (9¢), The index €is o range index
in (T in (9 ¢ is an acimuth index. It is 2 usclful exercise for the reader

to try to visualize this impulse response,
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V. Some Additional Information

In all the above analysis we assumed a single point target PT at slant

range R from the radar. The linearity of cross-correlation in both the range

and azimuth processing ensures that at every position in the output array, the

pixel value obtained is ''reasonably" proportional to the reflectivity of the

corresponding location on the terrain, The illustration of this effect was

already given in Fig. 23, where the two mainlobes in the figure (together with

the sidelobes) add together to produce a curve which appears about the same

as that in the figure.

Additional simplifying assumptions we have used may become apparent to

the reader as he continues to explore the field of SAR more deeply. However,

it is hoped that armed with the basic understanding provided by the above analy-

sis. the reader will easily grasp the attendant subtleties.

For example, although an orbiting spacecraft SAR does not permit the

use of the simple geometry of Fig. 25, the azimuth correlation function never-

theless still takes a form similar to (91), because the quadratic approximation

is still useful. Thus the general SAR azimuth correlation function has the form

1

. D
Kj _ N 2mft” {
. L(t)-exptj 2ot + —— \

where fis the doppler center frequency and f is the azimuth chirp rate in Hertz/
ms related to SAR processing are described in

socond, Some interesting proble

the next section,




VI, Some SAR Processing Problems

A, Speckle

Because a SAR is coherent (i, e., preserves phase information), the
typical SAR image is marred with irregular variations in brightness which look
like a laser speckle pattern on the wall, The cause is the same for a SAR and
a laser,

Each resolution cell in a SAR image (i. e., each ''pixel' or correlated
output point) may be thought of as corresponding to a patch on the ground of
finite area. Within this patch there are many 'point'' targets, each contributing

to the overall reflectivity of the scene, as in Fig. 29, Suppose there are N of

® °
P, PT,
°
RESOLUTION P, POINT TARGETS
CELL
\‘ /
[ ]
(
RANGE /
[ ]
'
L PTN

AZIMUTH ————=t»

Fipg, 29, C.omposition of a Resolution Cell
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them, PTI’ PTZ' .s s PTN where N>>1.

For each k, 1= k= N, P".[‘k returns

a signal to the radar of the form

2R

sk(t) = Ak cos (¢( t - —C—) + Gk) (105)

where

R = nominal slant range to resolution cell

&(t) = the normal expected phase function, as in Section 1I, For

example

atz
d(t) = T+ wyt

= PPhase adjustment, a real number related to the actual slant

0
k
range of I—"I‘k owing to surface roughness, viewing angle, etc.

(Th: phase adjustment R also depends on dielectric and

reflection-phase-inversion characteristics of ka)’ Thus

0. is a random variable, uniform on [0, .’.n] , and independent

k
of 0‘, for k # 1.

A= IAkI‘ = the amplitude or reflection efficiency of T .

After mixing and correlation, the return from I'-“Tk is estimated as

£, = Ay exp {_. Ok} (106)

By the lincarity of cruss correlation, the overall correlated return from the

resolution cell is

N
S = E ry s E :\k exp {‘mk} (107)




We may express cach 'y in Cartesian form by

1

|
L e e e e e

1

1

k=1 k=1
or
S=1+3Q
where
N

I = I
1

N
) o= )
Q) E kk
k=1

=
1}

S =1 Q= A exXp A:IU}

where

. and

- 0 t‘m-‘ (W

. = 3 ’ l = b i C
r = A\k CXp \l_l()k’ = ll( t Ql

N
S = Ik+j§ Q

<

where Ik and Qk arce real, Thus Eq. (107) becomes

From Eq. (110), we may go back to the polar representation: thus

(108)

(109)

(110)

(111)

(112)

(113%)

(114a)

(11:4hH)




Since by Egs. (111), (112), I and Q are sums of many random variables, we may

assume by the central limit theorem (e. g., [4]) that I and Q are identically

Gaussian, Thus

A=4y/I"+Q (115)

is Rayleigh and

A2=12+Q2

is exponential, with mean equal to standard deviation. Thus the intensity A2

of the resolution cell is a random variable depending on look angle, slant range,
etc. The mean, E(AZ). would presumably provide a better estimate of the
"true' reflectivity of the resolution cell, However, we only have one sample
value of A2 from our correlation processing, and the signal-to-noise ratio of
the exponentially distributed random variable A° is 0 dB. To improve the situa-
tion, we may try to obtain more saruples for AZ. The interested reader is

referred to the excellent paper, [5] for further details,

B. Focusing
Both the range and azimuth correlation and signal functions were of the

form (Sections II, III)

s(t) = exp

where we choose '"a' to match the return signal value. In practice, especially
for the ozimuth processing, it is difficult to know the true signal value of "a"
because it depends on orbital information (cf. Fq. (93), for example), Mis-

match between the correlation value "a' and the signal value "a'" results in

5




There exist various feedback

degradation of the impulse response Eq. (96).

schemes to iteratively refine the value of '"a'' based on perceived image degra-
dation, The interested reader is referred to [6] for further details on these

""automatic focusing' (''autofocusing'') procedures.

C. Interpolation

As in Fig, 27, itis necessary to take data values along a curve for the
azimuth correlation, Rarely does a sampled grid of SAR data contain exactly
the right points, The result of using samples offset from the peaks in Fig., 27
is amplitude modulation of the signal resulting in increased sidelobe levels in
the impulse response (Eq. (96)) and consequent image quality degradation, The

interested reader may refer to [7], [8] for more information on interpolation

as a possible solution,

D. Roundoff Error

Digital processing is of course performed in a processor with finite word
lengths (and all the attendant dynamic range and accuracy limitations), Further

details and problem solutions are found in [1] and (9].

E, Sidelobes and Weighting

Because of the form of the impulse response in Eq, (96), image sidelobes
may sometimes be mistaken for targets, More often they will limit the radar

calibration accuracy, One solution is to ""weight' the correlation functions, The

sidelobes are thus reduced but the impulse response mainlobe is broadened, For

further background, see [10], Chapter 7, and [11], [12].
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